

Electronic Design System

Electronic Design System S.r.l. EDS
Località fornace vecchia
17043 CARCARE (SV) – ITALY
Tel.: +39 019 511 497
Mob.: +39 335 70 97 117
E-mail: info@eds-srl.it
www.eds-srl.it
Since 1984 on the market...

BENEFITS FOR FOIL MANUFACTURERS

Compliance with highest food and pharmaceutical requirements

High standards for competition with world's leading foil producers

Foil deliveries accompanied by the relevant certificates of quality and of actual product condition

Best product prices

Real-time hole quality control and mapping

Correlation with production data for identification of upstream process faults

Information systems data integration Historical analysis

TECHNOLOGY

Laser or LED technology

On-line foil inspection

Simultaneous detection at both webs in aluminium foil separators

High performances with multi strips, single web, separated webs and alternate-coil processing

Mechanical customization for enabling integration in any machine type

Manual or automatic retraction from on-line, working position for carrying out set-up and periodic maintenance operations Standard or customized detection configuration

On-line foil container and food-tray inspection systems

Holes down to 5 µm

Installations successfully proven through 27 years of dedicated experience

SAME TECHNOLOGY FOR SINGLE OR DOUBLE FOIL

SINGLE FOIL TECHNOLOGY

TECHNOLOGY

MINIMUM HOLE SIZE

10 µm LASER / 15 µm LED

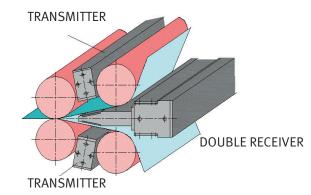
FOIL THICKNESS

No restrictions

WEB SPEED Maximum 2000 m./min.

DETECTABLE WEB WIDTH No restrictions

CROSS-WEB RESOLUTION ±5mm. with cell = 10 mm


SYSTEM STATUS MONITORING Real-time display on PC screen

SELF-DIAGNOSIS Continuous transmitter and receiver self-

diagnosis. Off-line tests on request

REPORT Full report graphics and analytic tables

WORKING TEMPERATURE $+ 5^{\circ}$ C to $+ 50^{\circ}$ C HUMIDITY $\sim 95^{\circ}$ RH

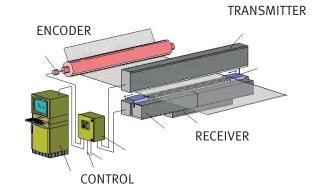
DOUBLE FOIL TECHNOLOGY

TECHNOLOGY LASER diode or LED array
MINIMUM HOLE SIZE 10 μm (5 μm as optional)
FOIL THICKNESS No restrictions

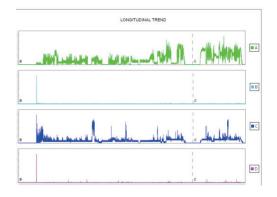
WEB SPEED Maximum 2000 m./min.
DETECTABLE WEB WIDTH No restrictions

CROSS-WEB RESOLUTION ±5mm. with cell = 10 mm

SYSTEM STATUS MONITORING Real-time display on PC screen


SELF-DIAGNOSIS

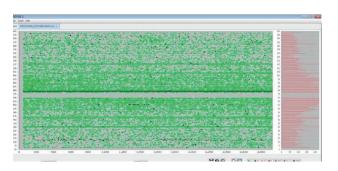
Continuous transmitter and receiver self-diagnosis. Off-line tests on request


Full report graphics and analytic tables

WORKING TEMPERATURE $+ 5^{\circ}\text{C}$ to $+ 50^{\circ}\text{C}$ HUMIDITY $\sim 95\%$ RH

REPORT

Full report with graphics & analytic data

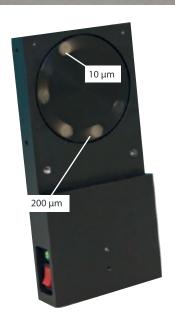

Automatic generation of detailed quality control reports for each product coil as, for example:

- · Reports for each mother coil
- · Reports for each rewind coil
- Reports for each strip

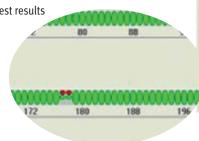
Each report contains:

- · Down-Web defective trend
- Cross-Web defective trend

- Compression map
- · Position details are given for each hole
- Density for each class
- Repetitive defects
- Statistical defective summary in max. 20 userdefinable intervals
- Detailed defective alarms occurrences
- Detailed system alarms occurrences
- Detailed inspection pause events


| No. | No.

SENSITIVITY TEST


OFF-LINE TEST ROTATING DISK WITH A CALIBRATED AND CERTIFIED PINHOLE

- This test is aimed to evaluate inspection system global performance under test conditions very close to standard operation ones.
- Calibration test device (HDL) can be easily mounted on its special frame before test start.
- When "off-line test" is started from auto test sub-menu, the special frame travels for scanning
 the inspection head. As a result of wheel and special frame movement, all cells are controlled
 in sequence. This enables an accurate sensitivity test of all cells considering the data relevant
 to both line speed and hole size.

- Off-line test device provides high sensitivity test on the basis of real web speed and the size of the holes to be detected
- All cells are checked in sequence by means of a rotating disk with a calibrated and certified pin hole
- System validation in accordance with ISO9000 Standard

Alarm bar shows off-line test results

Mand #1	- Left Side Cells											
HEEGE	- Lest Side Cells											
est OK												
0000	000000000	00000000	00000000	00000000	00000000	000000000	000000000	000000000	000000000	00000000	00000000)))()
101	108	116	124	132	140	148	156	164	172	180	188	1
ead #1	- Right Side Cell											
est OK												
vvvv	00000000	2000000	00000000	00000000	20000000	00000000	VVVVVVVV	200000000	VAVAVAVA	VAVAAAAA	VVVVVVVVV	VOOD
w	www.	16	24	32	40	48	56	64	72	80	MWMM 88	w
ead#2	- Left Side Cells											
met CK												
est OK	00000000	2000000			20000000	000000000	20000000	20000000			00000000	
0000	000000000	0000000	0000000	00000000	00000000	00000000	00000000	000000000	00000000)\$800000	00000000	0000
0000	00000000	0000000	0000000	00000000)))()() 140	00000000	000000000 156)(00)(00)(164	00000000	180)00000000 188	0000
0000	000000000)(((0)(0)(0)(0)(124	132	00000000 140	000000000	156	164	172	180)00000000 188	0000
0000	000000000		00000000 124	132)0000000 140	000000000	156)00000000 164	172) <mark>88</mark> 00000 180	188	0000
0000	000000000)0000000 124			000000000	00000000 156	164	172	180)00000000 188)))()
0000	000000000		0000000 124	132 Test Off		00000000000000000000000000000000000000	00000000 156	00000000 164	172	180	18B	0000
0000	000000000		124	Test Off	ine	148	156			180	188	XXX 1
0000	000000000		124	Test Off		148	156		172	180	188	0000
Fest OK 0000 101 Head #2	000000000		124	Test Off	ine	148	156			180	188	0000
0000	000000000		124	- Test Off	ine	148	156			180	188	0000

CERTIFIED MICRO HOLE SAMPLE

OFF-LINE TEST REPORT

nhole Detector E	EDS srl	27-05-2015 16:29					
	OFFLINE TEST	REPORT					
	Head #1 Left : C	OK .					
Total Cells	ls Id Cells failure						
80							
	Head #1 Right:	ОК					
Total Cells	Id Cell	s failure					
80							
	Head #2 Left : F	ail					
Total Cells	ld Cell	s failure					
80	48						
	Head #2 Right:	ОК					
Total Cells	id Cell	s failure					
80							

TECHNICAL DATA SHEET OF CSM FAMILY FOIL PINHOLE DETECTORS

 CSM10 CUT TO LENGTH LINE TINPLATE ALUMINIUM FOIL

 CSM20 SLITTING LINE COPPER FOIL **ALUMINIUM FOIL** STEEL WEB POLYMERIC WEB

CSM20D SEPARATOR LINE ALUMINIUM FOIL **TECHNOLOGY**

TECHNOLOGY MINIMUM HOLE SIZE FOIL THICKNESS **WEB SPEED** DETECTABLE WEB WIDTH CROSS-WEB RESOLUTION SYSTEM STATUS MONITORING SELF-DIAGNOSIS

WORKING TEMPERATURE HUMIDITY

LASER diode or LED array 10 µm (5 µm optional) Maximum 2000 m./min. No restrictions ±5mm. with cell = 10 mm Real-time display on PC screen Continuous transmitter and receiver self-diagnosis. Off-line tests on request + 5°C to ~ 50°C ÷95% RH

SCAN ME